
Synthesis with Abstract Examples

Dana Drachsler-Cohen1, Sharon Shoham2, and Eran Yahav1

1 Technion, Haifa, Israel
2 Tel Aviv University, Tel Aviv, Israel

Abstract. Interactive program synthesizers enable a user to communicate his/her
intent via input-output examples. Unfortunately, such synthesizers only guarantee
that the synthesized program is correct on the provided examples. A user that
wishes to guarantee correctness for all possible inputs has to manually inspect
the synthesized program, an error-prone and challenging task.
We present a novel synthesis framework that communicates only through (ab-
stract) examples and guarantees that the synthesized program is correct on all
inputs. The main idea is to use abstract examples—a new form of examples that
represent a potentially unbounded set of concrete examples. An abstract example
captures how part of the input space is mapped to corresponding outputs by the
synthesized program. Our framework uses a generalization algorithm to compute
abstract examples which are then presented to the user. The user can accept an
abstract example, or provide a counterexample in which case the synthesizer will
explore a different program. When the user accepts a set of abstract examples that
covers the entire input space, the synthesis process is completed.
We have implemented our approach and we experimentally show that our synthe-
sizer communicates with the user effectively by presenting on average 3 abstract
examples until the user rejects false candidate programs. Further, we show that a
synthesizer that prunes the program space based on the abstract examples reduces
the overall number of required concrete examples in up to 96% of the cases.

1 Introduction

We address the problem of interactive synthesis, where a user and synthesizer interact
to generate a program that captures the user’s intent. Interactive synthesis enables users
to express their intent by providing the synthesizer with input-output examples. Unfor-
tunately, such synthesizers only guarantee that the synthesized program is correct on the
provided examples. A user that wishes to guarantee correctness for all possible inputs
has to manually inspect the synthesized program, an error-prone and challenging task.
Motivating Example Eli Gold is a crisis manager at a law firm. Due to a crisis, he has
to meet all office members personally. After setting up times and storing the meeting
times in an Excel spreadsheet (Fig. 1), Eli wants to send emails with a personal message
notifying each member of the time of the meeting. He starts typing the messages in
Excel. While typing the third message, Flash Fill [21] (a PBE synthesizer integrated in
Excel) synthesizes a program and creates messages for all members on the list.

At first glance, Flash Fill seems to have learned the correct program. However, care-
ful inspection reveals that instead of the desired “Hi” greeting, the message’s first word
is an “H” followed by the second letter of the person’s first name. This demonstrates the

2

Fig. 1. Using Flash Fill to send meeting appointments.

importance of inspecting the synthesis result before relying on it to handle additional
examples (e.g., lines 4–6 in the Excel spreadsheet).

Goal In this work, we wish to ensure correctness of the synthesized program on all
inputs, while still interacting with the user through examples.

Existing Techniques Interactive synthesis with correctness guarantees can be viewed
as a special case of exact learning [10], where a learner (the synthesizer) and a teacher
(the user) interact to find the target concept known to the teacher. In exact learning,
the learner interacts with the teacher by asking two kinds of questions: (i) membership
questions, where the learner asks for the output of a given input, and (ii) validation que-
stions, where the learner asks whether a hypothesis (a synthesized program) is correct
and if not, asks for a counterexample.

The popular counterexample-guided inductive synthesis (CEGIS) [41] approach can
be viewed as an instance of exact learning where the teacher is realized as a verifier
with a formal specification (rather than a user). The formal specification provides an
efficient way to answer validation questions automatically. Using validation questions
ensures correctness on all inputs, but requires a formal specification of the user intent,
a specification which often does not exist.

In contrast, in programming by example (PBE), the user provides a set of input-
output examples which correspond to membership questions (and answers). Classical
PBE approaches (e.g., [33, 5, 29]) do not use any validation questions, and never pre-
sent the synthesized program to the user. These techniques tradeoff exactness for ease
of interaction with an end-user. In terms of correctness, they only guarantee that the
synthesized program is consistent with the user-provided examples. Other techniques
(e.g., [26]) obtain correctness but make additional assumptions (see Section 6).

Relying solely on membership questions is limited in its ability to ensure correct-
ness. Without validation queries or additional assumptions on the program space, cor-
rectness is only guaranteed if the entire input space is covered by membership questions
(examples). When the input space is finite, this is usually impractical. When the input
space is infinite, asking membership questions about all inputs is clearly impossible.

Our Approach We present a novel interactive synthesis framework that communicates
with a user only through abstract membership queries—asking the user whether an
abstract example of the current candidate program should be accepted or rejected— and
guarantees that the synthesized program is correct on all inputs. Abstract examples are a
new form of examples that represent a potentially unbounded set of concrete examples
of a candidate program. Abstract examples are natural for a user to understand and
inspect (similarly to examples), and at the same time enable validation of the synthesis
result without enumerating all concrete examples (which is only possible for a finite
domain, and even then is often prohibitively expensive). In fact, an abstract membership

3

question can also be viewed as a partial validation question. Instead of presenting the
user with a program and asking him/her to determine whether or not it is correct (a
validation question), we present an abstract example, which describes (declaratively)
how the candidate program transforms part of the input space. In this way, abstract
examples allow us to perform exact synthesis without a predefined specification.

Throughout the synthesis process, as the synthesizer explores the space of candidate
programs to find the one that matches the user intent, the synthesizer presents to the user
abstract examples of candidate programs. The user can accept an abstract example, or
provide a counterexample, in which case the synthesizer will explore a different candi-
date program. By accepting an abstract example, the user confirms the behavior of the
candidate program on part of the input space. That is, the synthesizer learns the desired
behavior for an unbounded number of concrete inputs. Thus, it can prune every pro-
gram that does not meet the confirmed abstract example. This pruning is correct even if
later the candidate program is rejected by another abstract example. Generally, pruning
based on an abstract example removes more programs than pruning based on a concrete
example. Thus, our synthesizer is likely to converge faster to the target program com-
pared to the current alternative (see Section 5). When the user accepts a set of abstract
examples that covers the entire input space, our synthesizer returns the corresponding
candidate program and the synthesis process is completed.

A key ingredient of our synthesizer is a generalization algorithm, called L-SEP. L-
SEP takes a concrete example and a candidate program, and generalizes the example
to a maximally general abstract example consistent with the candidate program. We
illustrate this on our motivating example, where the candidate program is the one synt-
hesized by Flash Fill (that returns “H” followed by the second letter of the person’s first
name, etc.) and the initial concrete example is the first member on the list (i.e., Diane).
Our generalization algorithm produces the following abstract example:

a0a1A2 B C→ Ha1 a0a1A2, please come to my office at C . -EG

This example describes the program behavior on the cells in columns A, B, and C,
for the case where the string in cell A has at least two characters, denoted by a0 and a1,
followed by a string sequence of arbitrary size (including 0), denoted by A2. For such
inputs, the example describes the output as a sequence consisting of: (i) the string “H”
followed by a1, (ii) the entire string at A followed by a comma, (iii) the string: “please
come to my office at”, (iv) the string at C, and (v) the string: “. -EG”.

This abstract example is presented to the user. The user rejects it and provides a
concrete counterexample (e.g., line 4 in the Excel spreadsheet). Thus, the synthesizer
prunes the space of candidate programs and generates a new candidate program. Even-
tually, the synthesizer generates the target program (as a candidate program), and our
synthesizer presents the following abstract example:

A B C→ Hi A, please come to my office at C . -EG

This time, the user accepts it. Since this abstract example covers the entire input space,
the synthesizer infers that this program captures the user intent on all inputs and returns
it. In general, covering the input space may require multiple abstract examples.

4

We have implemented our synthesizer and experimentally evaluated it on two dom-
ains: strings and bit vectors. Results indicate that our synthesizer can communicate with
the user effectively by presenting on average 3 abstract examples until the user rejects
false candidate programs (on our most challenging benchmark, consisting of programs
that require a large number of examples to differentiate them from the other programs).
Further, results show that pruning the program space based on the abstract examples
reduces the overall number of required concrete examples in up to 96% of the cases.
Main Contributions The main contributions of this paper are:

– A new notion of abstract examples, which capture a (potentially unbounded) set of
concrete examples, and a realization via a language inspired by regular expressions
(Section 2).

– A generalization algorithm for learning a maximally generalizing abstract example
from a concrete example and a candidate program (Section 3).

– A novel synthesis framework that communicates only through abstract examples
and guarantees that the synthesized program is correct on all inputs (Section 4).

– An implementation and experimental evaluation that shows that our synthesizer
requires few abstract examples to reject false programs, and that it reduces the
number of concrete examples required to find the target program (Section 5).

2 Abstract Specifications and Sequence Expressions

In this section, we define the key terms pertaining to abstract examples. We then present
a special class of abstract examples for programs that manipulate strings. For simpli-
city’s sake, from here on we assume that programs take one input. This is not a limita-
tion, as multiple inputs (or outputs) can be joined with a predefined delimiter (e.g., the
inputs in the motivating example can be considered as one string separated by spaces).

2.1 Abstract Examples

Program Semantics The semantics of a program P is a function over a domain D:
JP K : D → D. We equate JP K with its input-output pair set: {(in, JP K(in)) | in ∈ D}.
Abstract Examples An abstract example ae defines a set JaeK ⊆ D ×D, which repre-
sents a partial function: if (in, out1), (in, out2) ∈ JaeK, then out1 = out2. An abstract
example ae is an abstract example for program P if JaeK ⊆ JP K. We define the domain
of ae to be dom(ae) = {in ∈ D | ∃out. (in, out) ∈ JaeK}.
Abstract Example Specifications An abstract example specification of P is a set of
abstract examples A for P such that

⋃
ae∈A dom(ae) = D. Note that A need not be

finite and the example domains need not be disjoint.

2.2 Sequence Expressions

In this work, we focus on programs that manipulate strings, i.e., D = Σ∗ for a fi-
nite alphabet Σ. Thus, it is desirable to represent abstract examples as expressions that
represent collections of concrete strings and can be readily interpreted by humans. A
prominent candidate for this goal is regular expressions, which are widely used to suc-
cinctly represent a set of strings. However, regular expressions are restricted to constant
symbols (from Σ). Thus, they cannot relate outputs to inputs, which is desirable when

5

SI ::= SI · SI | ε | σ | xR |XR | σk SO ::= SO · SO | ε | σ | x | f(x) |X | f(X) | σk

(a) Input SE (b) Output SE

Fig. 2. SE grammar: σ ∈ Σ, x ∈ x, X ∈ X, k ∈ K, R ∈ R, f ∈ F .

describing partial functions (abstract examples). To obtain this property, we introduce
a new language, Sequence Expressions (SE), that extends regular expressions with the
ability to relate the outputs to their inputs via shared variables. We begin this section
with a reminder of regular expressions, and then introduce the two types of sequence
expressions: input SEs, for describing inputs, and output SEs, for describing outputs.

Regular Expressions (RE) The set of regular languages over a finite alphabet Σ is
the minimal set containing ε, σ1, ..., σ|Σ| that is closed under concatenation, union, and
Kleene star. A regular expression r is a text representation of a regular language over
the symbols in Σ and the operators ·, |,∗ (concatenation, or, and Kleene star).

Input SE Syntax Fig. 2(a) shows the grammar of input SEs. In contrast to RE, SEs are
extended with three kinds of variables that later help to relate the output to the input:

– Character variables, denoted x ∈ x, used to denote an arbitrary letter from Σ.
– Sequence variables, denoted X ∈ X, used to denote a sequence of arbitrary size.
– Star variables, denoted k ∈ K, used instead of the Kleene star to indicate the

number of consecutive repeating occurrences of a symbol. For example, 0k has the
same meaning as the RE 0∗.

To eliminate ambiguity, in our examples we underline letters from Σ. For example,
xXa represents the set of words that have at least two letters and end with an a (a ∈ Σ).

We limit each variable (i.e., x,X, k) to appear at most once at an input SE. We
also limit the use of a Kleene star to single letters from the alphabet. Also, since the
goal of each SE is to describe a single behavior of the program, we exclude the ‘or’
operator. Instead, we extend the grammar to enable to express ‘or’ to some extent via
predefined predicates that put constraints on the variables. We denote these predicates
by R ∈ R, and their meaning (i.e., the set of words that satisfy them) by JRK ⊆ Σ∗.
We note that we do not impose restrictions on the set R, however our algorithm relies
on an SMT-solver, and thus predicates inR have to be encodable as formulas.

Some examples for predicates and their meaning are: JnumK = {w ∈ Σ∗ |
w consists of digits only}, JanumK = {w ∈ Σ∗ | w consists of letters and digits only},
JdelK = {., \t, ; }, Jno delK = Σ∗ \ JdelK. We assume that the predicate satisfied by
any string, T, (where JT K = Σ∗) is always in R. We abbreviate xT, XT to x,X . In the
following, we refer to these as atomic constructs: σ, xR, XR, σ

k. Given an input SE se,
we denote by xse, Xse, and Kse the set of variables in se.

Input SE Semantics To define the semantics, we first define interpretations of an SE,
which depend on assignments. An assignment env for an input SE se maps every
x ∈ xse to a letter in Σ, every X ∈ Xse to a sequence in Σ∗, and every k ∈ Kse

to a natural number (including 0). We denote by env[se] the sequence over Σ obtai-
ned by substituting the variables with their interpretations. Formally: (i) env[ε] = ε
(ii) env[σ] = σ (iii) env[xR] = env(x) (iv) env[XR] = env(X) (v) env[σk] =
σenv(k) (vi) env[S1 · S2] = env[S1] · env[S2] (where · denotes string concatenation).
An assignment is valid if for every xR and XR in se, env(x), env(X) ∈ JRK. In the
following we always refer to valid assignments.

6

The semantics of an input SE se, denoted by JseK, is the set of strings obtained
by the set of all valid assignments, i.e. JseK = {s ∈ Σ∗ | ∃env. env[se] = s}. For
example, JσK = {σ}, JxK = Σ, JXK = Σ∗, and JσkK = {ε, σ, σσ, ...}.
Output SE Fig. 2(b) shows the grammar of output SEs. Output SEs are defined with
respect to an input SE and they can only refer to its variables. Formally, given an input
SE se, an output SE over se is restricted to variables in xse, Xse, and Kse. Unlike
input SEs, an output SE is allowed to have multiple occurrences of the same variable,
and variables are not constrained by predicates. In addition, output SEs can express
invocations of unary functions over the variables. Namely, the grammar is extended by
f(x) and f(X), where x ∈ xse and X ∈ Xse, and f : Σ → Σ∗ is a function.

An interpretation of an output SE is defined with respect to an assignment, simi-
larly to the interpretation of an input SE. We extend the interpretation definition for
the functions as follows: env[f(x)] = f(env(x)) and if env(X) = σ1 · · ·σn then
env[f(X)] = f(σ1) · · · f(σn), i.e., env[f(X)] is the concatenation of the results of in-
voking f on the characters of the interpretation ofX . (If env(X) = ε, env[f(X)] = ε.)
Input-Output SE Pairs An input-output SE (interchangeably, an SE pair) is a pair io =
sein → seout consisting of an input SE, sein, and an output SE, seout, defined over
sein. Given io = sein → seout, we denote in(io) = sein and out(io) = seout. The
semantics of io is the set of pairs: JioK = {(sin, sout) ∈ Σ∗ × Σ∗ | ∃env. sin =
env[in(io)] ∧ sout = env[out(io)]}. The domain of io is dom(io) = Jin(ae)K.
Example An input-output SE for the pattern of column D based on columns A,B in
Fig. 1 is: x0no delX1no del X2 → flowercase(x0).flowercase(X2)@lockhart-gardner.com
where x0 is a character variable, X1 and X2 are sequence variables and denotes a
column delimiter (taken from Σ). The predicate no del is satisfied by words that do not
contain a delimiter. The semantics of this SE pair is the set of all word pairs whose first
element is a string consisting of a first name, a delimiter, and a last name, and the second
element is the email address which is the sequence of the first letter of the first name in
lower case, a dot, the lower-cased last name, and the suffix “@lockhart-gardner.com”.

2.3 Sequence Expressions as Abstract Examples

SE pairs provide an intuitive means to describe relations between outputs to inputs. We
focus on learning abstract examples that can be described with SE pairs. For simplicity’s
sake, in the following we ignore predicates and functions (i.e., R,F). Our definitions
and algorithms can be easily extended to arbitrary (but finite) setsR and F .

We say that an input-output SE is an abstract example if JioK describes a partial
function. Note that in general, an SE pair is not necessarily an abstract example. For
example, the pair ioXY = XY → XaY , can be interpreted to (bbb, babb) (by env1 =
{X 7→ b, Y 7→ bb}) and (bbb, bbab) (by env2 = {X 7→ bb, Y 7→ b}). Thus, JioXY K is
not a partial function and hence not an abstract example.

Given a program P , we say that an input-output SE is an abstract example for P
if JioK ⊆ JP K. Since JP K is a function, this requirement subsumes the requirement of
abstract example. Given an input SE sein, we say that an output SE seout over sein is
a completion of sein for P if sein → seout is an abstract example for P .
Example We next exemplify how SEs can provide an abstract example specification
to describe a program behavior. Assume a user has a list of first names and middle

7

names (space delimited), some of which are only initials, and the goal is to create a
greeting message of the form “Dear <name>”. The name in the greeting is the first
string if it is identified as a name, i.e., has at least two letters; otherwise, the name
is the entire string. For example: (i) Adam → Dear Adam, (ii) Adam R. → Dear
Adam, (iii) A. Robert → Dear A. Robert (iv) A.R. → Dear A.R.. In this example,
we assume the predicate set contains the predicates R = {T, name, other}, where
JnameK = {A, a, ..., Z, z}+ \ {A, a, ..., Z, z}, JotherK = (Σ \ { })∗ \ JnameK. An
abstract example specification is: (i) X0name → Dear X0 (ii) X0name X1 → Dear X0

(iii) X0other → Dear X0 (iv) X0other X1 → Dear X0 X1.
Discussion While SEs can capture many program behaviors, they have limitations. One
limitation is that an SE can only describe relations between output characters to input
characters, but not among input characters. For example, it cannot capture inputs that
are palindromes or inputs of the form XX (e.g., abab). This limitation arises because
we chose input SEs to be (a subset of) regular expressions, which cannot capture such
languages. Also, tasks that are not string manipulations are likely to have a specification
that contains (many) trivial abstract examples (i.e., concrete input-output examples).
For example, consider a program that takes two digits and returns their multiplication.
Some abstract examples describing it are X 1 → X and 1 X → X . However, the
specification also contains 9 2 → 18, 9 3 → 27,...,9 9 → 81. Moreover, an abstract
example specification consists of a set of independent abstract examples, with no par-
ticular order. As a result, describing if-else rules requires encoding the negation of the
“if” condition explicitly in order to obtain the same case splitting as an if-else structure.
Generalization Order We next define a partial order between SEs that are abstract ex-
amples. This order is leveraged by our algorithm in the next section. We call this order
the generalization order and if an abstract example is greater than another one, we say
it is more general or abstract. We begin with defining a partial order � on the atomic
constructs of SEs, as follows: X

x σk

σ

where σ ∈ Σ, x ∈ x, X ∈ X and k ∈ K.

We say that an input SE se′ is more general than se, se � se′, if its atomic constructs
are pointwise more general than the atomic constructs of se. Namely, for se = a1 · · · an
and se′ = a′1 · · · a′n (where ai and a′i are atomic constructs), se � se′ if for every
1 ≤ i ≤ n, ai � a′i. If se � se′ ∧ se 6= se′, we write se ≺ se′. For example,
abc ≺ abkc ≺ xY Z. In addition, we define that for any atomic construct a, a 6� ε and
ε 6� a. The generalization order implies the following:

Lemma 1. Let se, se′ be two input SEs. If se � se′, then JseK ⊆ Jse′K.

The proof follows directly from the definition of � and the semantics of an input SE.
Note that the converse does not necessarily hold. For example, JXY K = JZK, butXY 6�
Z and Z 6� XY . In fact, � may only relate SEs of the same length. In practice, we
partly support generalizations beyond � (see Section 3).

The generalization order of input SEs induces a generalization order on input-output
SEs: io � io′ if in(io) � in(io′). If io and io′ are abstract examples for the same pro-
gram P , this implies that JioK ⊆ Jio′K. Moreover, in that case JioK ⊆ Jio′K if and only if

8

Jin(io)K ⊆ Jin(io′)K. This observation enables our algorithm to focus on generalizing
the input SE instead of generalizing the pair as a whole.

3 An Algorithm for Learning Abstract Examples
In this section, we describe L-SEP, our algorithm for automatically Learning an SE
Pair. This pair is an abstract example for a given program and it generalizes a given
concrete example. In Section 4, we will use L-SEP repeatedly in order to generate an
abstract example specification.

L-SEP (Algorithm 1) takes as input a program P (e.g., the program Flash Fill le-
arned) and a (concrete) input in (e.g., Diane). These two define the initial SE to start
with: (in, JP K(in)) (namely, the concrete example). The algorithm outputs an input-
output SE, io = sin → sout, such that (in, JP K(in)) ∈ JioK ⊆ JP K. Namely, io
generalizes (or abstracts) the concrete example and is consistent with P . L-SEP’s goal
is to find an io that is maximal with respect to �.

The high-level operation of L-SEP is as follows. First, it sets io = in → JP K(in).
Then, it gradually generalizes io as long as this results in pairs that are abstract examples
for P . The main insight of L-SEP is that instead of generalizing io as a whole, it gene-
ralizes the input SE, in(io), and then checks whether there is a completion of in(io) for
P , namely an output SE over in(io) such that the resulting pair is an abstract example
for P . This is justified by the property that io � io′ if and only if in(io) � in(io′).

3.1 Input Generalization
We now explain the pseudo-code of L-SEP. After initializing io by setting sin = in
and sout = JP K(in), L-SEP stores in InCands the set of candidates generalizing
sin (which are the input components of io’s generalizations). Then, a loop attempts
to generalize sin as long as InCand 6= ∅. Each iteration picks a minimal element
from InCands, s′in, which is a candidate to generalize sin. To determine whether s′in
can generalize sin, findCompletion is called. If it succeeds, it returns s′out such that
s′in → s′out is an abstract example for P . If it fails, ⊥ is returned. Either way, the
search space, InCands, is pruned: if the generalization succeeds, then the candidates
are pruned to those generalizing s′in; otherwise, they are pruned to those except the
ones generalizing s′in. If the generalization succeeds, sin and sout are updated to s′in
and s′out.

Our next lemma states that if findCompletion returns⊥, pruning InCands does
not remove input SEs that have a completion for P . The lemma guarantees that L-SEP
cannot miss abstract examples for P because of this pruning.
Lemma 2. If s′′in � s′in and s′in has no completion for P , s′′in has no completion for P .

Proof (sketch). We prove by induction on the number of generalization steps required
to get from s′in to s′′in. Base is trivial. Assume the last generalization step is to replace
a′i in sin′ with a′′i in s′′in. If s′′in has a completion s′′out for P , then substitute a′′i in s′′out
by a′i to obtain a completion for s′in. However, this contradicts our assumption. ut
InCands For ease of presentation, L-SEP defines InCand as the set of all generali-
zations of in that remain to be checked, where initially it contains all generalizations.
However, the size of this set is exponential in the length of in, and in practice, L-
SEP does not maintain it explicitly. Instead, it maintains two sets: MinCands, which

9

Algorithm 1: L-SEP(P , in)
1 sin = in; sout = JP K(in)
2 InCands = {s ∈ SEin | s � sin}
3 while InCands 6= ∅ do
4 s′in = pick a minimal element from InCands
5 s′out = findCompletion(P , s′in) // if succeeds, Js′in → s′outK ⊆ JP K

6 if s′out 6= ⊥ then
7 sin = s′in ; sout = s′out
8 InCands = InCands ∩ {s ∈ SEin | s � sin}
9 else

10 InCands = InCands \ {s ∈ SEin | s � s′in}

11 return (sin, sout)

records the minimal generalizations of the current candidate sin that remain to be chec-
ked, and Pruned, which records the minimal generalizations that were overruled (and
hence none of their generalizations need to be inspected). In Line 2 and Line 8 L-SEP
initializes MinCands based on the current candidate sin by computing all of its mi-
nimal generalizations. In Line 10 it removes from MinCand the generalization that
was last checked and failed, and also records this generalization in Pruned to indicate
that none of its generalizations need to be inspected. Pruned is used immediately after
initializing MinCand in Line 8 to remove from MinCands any generalization that
generalizes a member of Pruned – this efficiently implements the update of InCands
in Line 10. Using this representation of InCands we can now establish:

Lemma 3. The number of iterations of L-SEP is O(|in|2 · |R|2).

Proof. The number of iterations is at most the maximal size of MinCands multiplied
by the number of initializations of MinCands based on a new candidate sin in Line 8.
The size of MinCands computed based on some sin is at most |in| · (|R| + 1). This
follows since a minimal generalization of sin differs from sin in a single construct that
is more general than the corresponding construct in sin (with respect to the partial order
of constructs). The number of initializations of MinCands at Line 8 is bounded by the
longest (possible) chain of generalizations. This follows because each such initializa-
tion is triggered by the update of sin to a more general SE. Since the longest chain of
generalizations is at most |in| ·(|R|+1), the number of iterations isO(|in|2 · |R|2). ut
Lemma 3 implies thatMinCands and Pruned provide a polynomial representation of
InCands (even though the latter is exponential). Further, the use of these sets enables
L-SEP to run in polynomial time because they provide a quadratic bound on the number
of iterations, and because findCompletion is also polynomial, as we shortly prove.

Picking a Minimal Generalization We now discuss how L-SEP picks a minimal ge-
neralization of sin in Line 4. One option is to do so arbitrarily. However, this greedy
approach may result in a sub-optimal maximal generalization, namely, a maximal ge-
neralization that concretizes to fewer concrete inputs than some other possible maximal
generalization. On the other hand, to obtain an optimal generalization, all generalizati-
ons that have a completion have to be computed and only then can the best one be picked
by comparing the number of concretizations. Unfortunately, this approach results in an

10

Algorithm 2: findCompletion(P , s′in)

1 return findOutputPrefix(P ,s′in, ε)
2 Function findOutputPrefix(P , s′in, sprefout):
3 if Js′in → sprefout K ⊆ JP K then return sprefout

4 Cands = {s ∈ SEout(s
′
in) | s is an atomic construct}

5 while Cands 6= ∅ do
6 sym = pick and remove a minimal element from Cands

7 if Js′in → sprefout · symK ⊆ {(in, op) | ∃os ∈ Σ∗.(in, op · os) ∈ JP K} then
8 sprefout = sprefout · sym
9 s′out = findOutputPrefix(P , s′in, sprefout)

10 if s′out 6= ⊥ then return s′out

11 return ⊥

exponential time complexity and is thus impractical. Instead, our implementation of L-
SEP takes an intermediate approach: it considers all minimal generalizations that have
a completion and picks one that concretizes to a maximal number of inputs. To avoid
counting the number of inputs (which may be computationally expensive), our imple-
mentation employs the following heuristic. It syntactically compares the generalizations
by comparing the construct in each of them that is not in sin (i.e., where generalization
took place). It then picks the generalization whose construct is maximal with respect
to the order: X > σk > x. If there are generalized constructs that are not comparable
w.r.t. this order (e.g., σk1 vs. σk2), one is picked arbitrarily.

3.2 Completion
findCompletion (Algorithm 2) takes P and an input generalization s′in and returns a
completion of s′in for P , if one exists; or ⊥, otherwise.

In contrast to input SEs, if a certain candidate s′′out is not a completion of s′in for
P , this does not imply that its generalizations are also not completions of s′in. Thus,
a pruning procedure similar to the one in L-SEP may result in missing completions.
Consider, for example, a program P whose abstract example specification is {xX →
bX}. Assume that while L-SEP looks for a completion for s′in = ax it considers s′out =
ba, which is not a completion. Pruning SEs that are more general than s′out will result
in pruning the completion bx. Likewise, pruning elements that are more specific than a
candidate that is not a completion may result in pruning completions.

Since the former pruning cannot be used to search the output SE, findCompletion
searches differently, by making gradual attempts to construct a completion s′out
construct-by-construct. If an attempt fails, it backtracks and attempts a different con-
struction. This is implemented via the recursive function findOutputPrefix. At each
step, a current prefix sprefout (initially ε) is extended with a single atomic construct sym
(i.e., σ, x,X, σk). Then, it checks whether the current extended construction is parti-
ally consistent with P (Line 7). If the check fails, this extended prefix is discarded,
thereby pruning its extensions from the search space. Otherwise, the extended prefix is
attempted to be further extended. We next define partial consistency.

Definition 1. An SE pair s′in → sprefout is partially consistent with P if for every assig-
nment env, env[sprefout] is a prefix of JP K(env[s′in]).

11

When s′in is clear from the context, we say that sprefout is partially consistent with P .
By the semantics definition, a pair s′in → sprefout is partially consistent with P if

and only if Js′in → sprefout K ⊆ {(in, op) | ∃os ∈ Σ∗.(in, op · os) ∈ JP K} (which is the
check of line 7). Partial consistency is a necessary condition (albeit not sufficient) for
sprefout · sym to be a prefix of a completion s′out. Thus, if sprefout · sym is not partially
consistent, there is no need to check its extensions. Note that even if a certain prefix
sprefout · sym is partially consistent, it may be that this prefix cannot be further extended
(namely, the suffixes cannot be realized by an SE). In this case, this prefix will be
discarded in later iterations and sprefout and a different attempt to extend sprefout will be
made. This extension process terminates when an extension results in a completion, in
which case it is returned, or when all extensions fail, in which case ⊥ is returned.

Lemma 4. The recursion depth of Algorithm 2 is bounded by the length of JP K(in).

Proof. Denote by n the length of JP K(in). Assume to the contrary that the recursion
depth exceeds n. Namely, the current prefix, sprefout , is strictly longer than n. We show
that in this case, the partial consistency check is guaranteed to fail. To this end, we
show an assignment env to s′in such that env[sprefout] is not a prefix of JP K(env[s′in]).
Consider the assignment env that maps each variable in s′in to its original value in in
(namely, env[s′in] = in). This assignment maps each variable to exactly one letter. By
our assumption, the length of env[sprefout] is greater than n. Thus, env[sprefout] (of length
> n) cannot be a prefix of JP K(in) (of length n). ut

3.3 Guarantees
Lemma 3 and Lemma 4 ensure that both the input generalization and the completion
algorithms terminate in polynomial time. Thus, the overall runtime of L-SEP is poly-
nomial. Finally, we discuss the guarantees of these algorithms.

Lemma 5. findCompletion is sound and complete: if it returns s′out, then s′out is a
completion of s′in for P , and if it returns ⊥, then s′in has no completion for P .

Soundness follows since findOutputPrefix returns s′out only after validating that
Js′in → s′outK ⊆ JP K. Completeness follows since s′out is gradually constructed and
every possible extension is examined.

Lemma 6. L-SEP is sound and complete: for every (in, out) pair, an SE pair is retur-
ned, and if L-SEP returns an SE pair, then it is an abstract example for P .

Soundness is guaranteed from findCompletion. Completeness follows since even if
all generalizations fail, L-SEP returns the concrete example as an SE pair.

Theorem 1. L-SEP returns an abstract example io for P such that (in, JP K(in)) ∈
JioK and io is maximal w.r.t. �.

This follows from Lemma 2, Lemma 5, and since L-SEP terminates only when
InCands is empty (i.e., when there are no more input generalizations to explore).

We note that in our implementation, findCompletion runs heuristics instead of
the expensive backtracking. In this case, maximality is no longer guaranteed.

12

3.4 Running Example

We next exemplify L-SEP on the (shortened) example from the Introduction, where we
start from the concrete example in = Diane and we wish to obtain the abstract example
a0a1A2 → Ha1 a0a1A2. L-SEP starts with: sin = Diane and sout = Hi Diane. It then
picks a minimal candidate that generalizes sin. A minimal candidate differs from sin in
one atomic construct in some position i. By �, if sin[i] = σ, then s′in[i] is x or σk.

Assume that L-SEP first tests this minimal candidate: s′in = Dk0 iane. To test it,
L-SEP calls findCompletion to look for a completion. The completion is defined
over s′in and in particular can use the variable k0. Then, findCompletion invokes
findOutputPrefix(P , Dk0 iane, ε). In the first call of findOutputPrefix, all ex-
tensions of the current prefix, ε, except for H, fail in the partial consistency check. This
follows since the output of P always starts with an ‘H’ (and not, e.g., with ‘Hk0 ’). Thus,
a recursive call is invoked (only) for the output SE prefix H. In this call, all extensions
(i.e., Hσ or Hσk0) fail. For example, Hi fails since the output prefix is not always “Hi”
(e.g., P (DDiane) = HD DDiane. Since the prefix H cannot be extended further, ⊥ is
returned. This indicates that the input generalization s′in = Dk0 iane fails. Thus, L-SEP
removes from InCands all generalizations whose first construct generalizes Dk0 .

L-SEP then tests another minimal generalization: s′in = x0iane. It then calls
findCompletion (which can use x0). As before, (only) the prefix SE H is found par-
tially consistent. Next, a second call attempts to extend H. This time, the extension Hi
succeeds because for all interpretations of x0iane, the output prefix is “Hi”. The recur-
sion continues, until obtaining and returning the completion Hi x0iane.

When L-SEP learns that s′in is a feasible generalization, it updates sin and sout, and
prunes InCands to candidates generalizing x0iane (for example, InCands contains
x0x1ane). Eventually, sin is generalized to s′in = x0x1X2X3X4 with the completion
s′out = Hx1 x0x1X2X3X4. In a postprocessing step (performed when L-SEP is done),
X2X3X4 is simplified to Y , resulting in the abstract example x0x1Y → Hx1 x0x1Y .
Note that the last “generalization” is no longer according to �.

4 Synthesis with Abstract Examples

In this section, we present our framework for synthesis with abstract examples. We as-
sume the existence of an oracle O (e.g., a user) that has fixed a target program Ptar.
Our framework is parameterized with a synthesizer S that takes concrete or abstract
examples and returns a consistent program. Note that the guarantee to finally output a
program equivalent to Ptar is the responsibility of our framework and not S. Nonethe-
less, candidate programs are provided by S.
Goal The goal of our framework is to learn a program equivalent to the target program.
Note that this is different from the traditional goal of PBE synthesizers, which learn
a program that agrees with the target program at least on the observed inputs. More
formally, our goal is to learn a program P ′ such that JPtarK = JP ′K, whereas PBE synt-
hesizers that are given a set of input-output examples E ⊆ D ×D can only guarantee
to output a program P ′′ such that JPtarK ∩ E = JP ′′K ∩ E.
Interaction Model We assume that the oracle O can accept abstract examples or reject
them and provide a counterexample. If the oracle accepts an abstract example io, then

13

JioK ⊆ JPtarK. If it returns a counterexample cex = (in′, out′), then (i) (in′, out′) ∈
JPtarK, (ii) (in′, out′) /∈ JioK, and (iii) in′ ∈ Jin(io)K.
Operation Our framework (Algorithm 3) takes an initial (nonempty) set of input-output
examples E ⊆ D ×D. This set may be extended during the execution. The algorithm
consists of two loops: an outer one that searches for a candidate program and an inner
one that computes abstract examples for a given candidate program. The inner loop
terminates when one of the abstract examples is rejected (in which case a new iteration
of the outer loop begins) or when the input space is covered (in which case the candidate
program is returned along with the abstract example specification).

The algorithm begins by initializing A to the empty set. This set accumulates ab-
stract examples that eventually form an abstract example specification of Ptar. Then
the outer loop begins (Lines 2–10). Each iteration starts by asking the synthesizer for a
program P consistent with the current set of concrete examples inE and abstract exam-
ples in A. Then, the inner loop begins (Lines 4–9). At each inner iteration, an input in
is picked and L-SEP(P, in) is invoked. When an abstract example io is returned, it is
presented to the oracle. If the oracle provides a counterexample cex = (in′, out′), then
JP K 6= JPtarK (see Lemma 7). In this case, E is extended with cex, and a new outer
iteration begins. If the oracle accepts the abstract example, io, the abstract example is
added to A (since it is an abstract example for Ptar). The idea is that the synthesizer
extends its set of examples with more examples (potentially an infinite number). This
(potentially) enables faster convergence to Ptar (in case additional outer iterations are
needed). If the inner loop terminates without encountering counterexamples, then A
covers the input domain D. At this point it is guaranteed that JP K = JPtarK (see Theo-
rem 2). Thus, P is returned, along with the abstract example specification A. Note that
A has already been validated and need not be inspected again.

We remark that although abstract examples can help the synthesizer to converge
faster to the target program, still the convergence speed (and the number of counterex-
amples required to converge) depends on the synthesizer (which is a parameter to our
framework) and not on L-SEP or our synthesis framework.

Lemma 7. If O(io) = (in′, out′) (6= ⊥), then JP K 6= JPtarK.

Proof. From the oracle properties (in′, out′) ∈ JPtarK, (in′, out′) /∈ JioK, and in′ ∈
Jin(io)K. Thus, there exists out′′ 6= out′ such that (in′, out′′) ∈ JioK. Since by con-
struction, JioK ⊆ JP K, it follows that (in′, out′′) ∈ JP K. Thus, JP K 6= JPtarK. ut

Theorem 2. Upon termination, Algorithm 3 returns a program P s.t. JP K = JPtarK.

Proof. Upon termination, for every in ∈ D there exists io ∈ A s.t. in ∈ Jin(io)K.
By construction JioK ⊆ JP K, and thus (in, JP K(in)) ∈ JioK. By the oracle properties,
JioK ⊆ JPtarK; thus (in, JPtarK(in)) ∈ JioK. Altogether, JP K(in) = JPtarK(in). ut

We emphasize that the interaction with the oracle (user) takes place only after both
a candidate program and an abstract example have been obtained; the goal of the in-
teraction is to determine whether the candidate program is correct. Rejection of the
abstract example by the user means rejection of the candidate program, in which case

14

Algorithm 3: synthesisWithAbstractExamples(E)
1 A = ∅ // initialize the set of abstract examples

2 while true do
3 P = S(E, A) // obtain a program consistent with the examples

4 while ∪io∈AJin(io)K 6= D do // A does not cover D

5 Let in ∈ D \ ∪io∈AJin(io)K // obtain uncovered input

6 io = L-SEP(P, in) // learn abstract example

7 cex= O(io) // ask the oracle

8 if cex = ⊥ then A = A ∪ {io} // abstract example is correct

9 else E = E ∪ {cex} ; break // add a counterexample

10 return (P , A)

the PBE synthesizer S looks for a new candidate program. In particular, the goal of the
interaction is not to confirm the correctness of the abstract examples – L-SEP always
returns (without any interaction) a correct generalization w.r.t. the candidate program.
Example We next exemplify our synthesis framework in the bit vector domain. We con-
sider a program space P defined inductively as follows. The identity function and all
constant functions are in P . For every op ∈ {Not,Neg} and P ∈ P , op(P) ∈ P , and
for every op ∈ {AND,OR,+, –,SHL,XOR,ASHR} and P1, P2 ∈ P , op(P1, P2) ∈ P .
We assume a naı̈ve synthesizer that enumerates the program space by considering pro-
grams of increasing size and returning the first program consistent with the examples.
In this setting, we consider the task of flipping the rightmost 0 bit, e.g., 10101→ 10111
(taken from the SyGuS competition [3]). While this task is quite easy to explain intuiti-
vely through examples, phrasing it as a logical formula is cumbersome. Assume a user
provides to Algorithm 3 the set of examples E = {(10101, 10111)}. Table 1 shows the
execution steps taken by our synthesis framework: E shows the current set of exam-
ples, P (x) shows the candidate program synthesized by the naı̈ve synthesizer, Abstract
Examples shows the abstract examples computed by L-SEP and Counterexample? is
either No if the user accepts the current abstract example (to its left) or a pair of input-
output example contradicting the current abstract example. In this example, L-SEP uses
the set of functions F = {fneg} in the output SE, where fneg(0) = 1, fneg(1) = 0,
and we abbreviate fneg(y) with ȳ. Further, since the bit vector domain consists of vec-
tors of a fixed size (namely, Σn for a fixed n instead of Σ∗), the SE’s semantics in
this domain is defined as the suffixes of size n of its (normal) interpretation. Formally,
JseKn = {s ∈ Σn | ∃env. s is a suffix of env[se]}. The semantics of an input-output
SE is defined similarly. In the example, the first two of programs are eliminated im-
mediately by the user, whereas the third program is eliminated only after showing the
third abstract example describing it. This enables the synthesizer to prune a significant
portion of the search space. Note that since abstract examples are interpreted over fixed
sized vectors (as explained above), the last abstract example covers the input space: if

k = n, the input is
n times︷ ︸︸ ︷
11...1; if k = 0, the input takes the form of b0...bn−10 (where the

bi-s are bits); and if 0 < k < n, the input takes the form of b0...bn−k−101k.

Leveraging Counterexamples for Learning Abstract Examples A limitation of L-SEP
is that it only generalizes the existing characters of the concrete input. For example,

15

E P (x) Abstract Examples Counterexample?

(10101,10111) P (x) = 10111 X → 10111 1→ 11

(10101,10111), (1,11) P (x) = OR(x, 2) X0x1x2 → X01x2 0→ 1

(10101,10111),
(1,11),(0,1)

P (x) = OR(x+ 1, 1) X00x2 → X0x21 No
X00→ X01 No

X00x11→ X0x1x̄11 11→ 111

(10101,10111),
(1,11),(0,1), (11,111)

P (x) = OR(x+ 1, x) X001k → X01k1 No

Table 1. A running example for learning a program that flips the rightmost 0 bit with our synthesis
framework. The target program is Ptar(x) = OR(x+ 1, x).

consider a candidate program generated by S that returns the first and last character of
the string, which can be summarized by the abstract example x0X1x2 → x0x2. If, in
the process of generating an abstract example specification for the candidate program,
the first example provided by Algorithm 3 to L-SEP for generalization is ab, then it is
generalized to x0x1 → x0x1. On the other hand, if the first example is acb, then it is
generalized to x0X1x2 → x0x1, whose domain is a strict superset of the former’s dom-
ain. This exemplifies that some inputs may provide better generalizations than others.
Although eventually our framework will learn the better generalizations, if Algorithm 3
starts from the less generalizing examples, then its termination is delayed, and unne-
cessary questions are presented to the oracle (in our example, x0x1 → x0x1 will be
presented, followed by x0X1x2 → x0x2, both of which are accepted, but the former
perhaps could have been avoided). We believe that the way to avoid such delay is to
pick “good” examples. We leave the question of how to identify them to future work,
but note that if the oracle is assumed to provide “good” examples (e.g., representative),
then Line 5 can be changed to first look for an uncovered input in E.

5 Evaluation
In this section, we discuss our implementation and evaluate L-SEP and our synthesis
framework. We evaluate our algorithms in two domains: strings and bit vectors (of size
8). The former domain is suitable for end users, as targeted by approaches like Flash
Fill or learning regular expressions. The latter domain is of interest to the synthesis
community (evident by the SyGuS competition [3]). We begin with our implementation
and then discuss the experiments. All experiments ran on a Sony Vaio PC with Intel(R)
Core(TM) i7-3612QM processor and 8GB RAM.

5.1 Implementation
We implemented our algorithms in Java. We next provide the main details.
Program Spaces The program space we consider for bit vectors is the one defined in the
example at the end of Section 4. The program spaceP we consider for the string domain
is defined inductively as follows. The identity function and all constant functions are
in P . For every P1, P2 ∈ P , concat(P1, P2) ∈ P . For P ∈ P and integers i1, i2,
Extract(P, i1, i2) ∈ P . For P1, P2 ∈ P , and a condition e over string programs and
integer symbols, ITE(e, P1, P2) ∈ P .

16

SE Spaces In the bit vector domain we consider F = {fneg} where fneg(b) = 1− b.
findCompletion To answer the containment queries (Lines 3 and 7), we use the Z3 SMT-
solver [15]. To this end, we encode the candidate program P and the SEs as formulas.
Roughly speaking, an SE is encoded as a conjunction of sequence predicates, each
encoding a single atomic construct. A sequence predicate extends the equality predicate
with a start position and is denoted by t1

i
= t2. An interpretation d1, d2 for t1, t2 satisfies

t1
i
=t2 if starting from the ith character of d1 the next |d2| characters are equal to d2. The

term t1 is either a unique variable tin, representing the input (for input SEs), or P (tin)
(for output SEs). The term t2 can be (i) σ (a letter from Σ), (ii) σk where k is a star
variable, or (iii) a character or sequence variable. For example,X0abk2x3 is encoded as:

tin
0
=X0∧tin

|X0|
= a∧(∀i.1+|X0| ≤ i < 1+|X0|+k2 → tin

i
=b)∧tin

1+|X0|+k2
= x3. Note

that the positions can be a function of the variables. In the string domain, the formulas
are encoded in string theory (except for i and k2, which are integers). In the bit vector
domain, entities are encoded as bit vectors and i

= is implemented with masks.

Synthesis Framework To check whetherA covers the input domain and obtain an unco-
vered input in if not, we encode the abstract examples in A as formulas. We then check
whether one of the concrete examples from E does not satisfy any of these formulas. If
so, it is taken as in. Otherwise, we check whether there is another input that does not
satisfy the formulas, and if so it is taken as in; otherwise the input domain is covered.

Synthesizer Our synthesizer is a naı̈ve one that enumerates the program space by con-
sidering programs of increasing size and returning the first program consistent with the
examples. Technically, we check consistency by submitting the formula P (in) = out
to an SMT-solver for every (in, out) ∈ E. Likewise, P is checked to be consistent with
the abstract examples by encoding them as formulas and testing whether they imply P .
More sophisticated PBE synthesizers, such as Flash-Fill, can in many cases be extended
to handle abstract examples in a straightforward manner.

5.2 Synthesis Framework Evaluation

In this section, we evaluate our synthesis framework on the bit vector domain. We con-
sider three experimental questions: (1) Do abstract examples reduce the number of con-
crete examples required from the user? (2) Do abstract examples enable better pruning
for the synthesizer? (3) How many abstract examples are presented to the user before
he/she rejects a program? To answer these questions, we compare our synthesis frame-
work (denoted AE) to a baseline that implements the current popular alternative ([41]),
which guarantees that a synthesized program is correct. The baseline acts as follows.
It looks for the first program that is consistent with the provided examples and then
asks the oracle whether this program is correct. The oracle checks whether there is an
input for which the synthesized program and the target program return different out-
puts. If so, the oracle provides this input and its correct output to the synthesizer, which
in turn looks for a new program. If there is no such input, the oracle reports success,
and the synthesis completes. We assume a knowledgable user (oracle), implemented
by an SMT-solver, which is oblivious to whether the program is easy for a human to
understand, making the comparison especially challenging.

17

B(4) B(6) B(8)
AE baseline AE baseline AE baseline

#Concrete examples (candidate programs) 4.42 5.64 5.50 7.68 6.62 10.26
Spec-final 11.04 9.36 13.22
#AE-intermediate 1.98 2.00 3.23
%Better than baseline 68% 76% 96%
%Equal to baseline 30% 22% 2%
%Worse than baseline 2% 2% 2%

Table 2. Experimental results on the bit vector domain.

Fig. 3. Detailed results for B(8).

Benchmarks We consider three benchmarks, B(4), B(6), and B(8), each consisting
of 50 programs. A program is in B(n) if baseline required at least n examples to find
it. To find such programs, we randomly select programs of size 4, for each we execute
baseline (to find it), and if it required at least n examples, we add it toB(n) and execute
our synthesis framework (AE) to find the same (or an equivalent) program.
Consistency of Examples The convergence of these algorithms is highly dependent on
the examples the oracle provides. To guarantee a fair comparison, we make sure that
the same examples are presented to both algorithms whenever possible. To this end, we
use a cache that stores the examples observed by the baseline. When our algorithm asks
the oracle for an example, it first looks for an example in the cache. Only if none meets
its requirements, it can ask (an SMT-solver) for a new concrete example.
Results Table 2 summarizes the results. It reports the following:

– #Concrete examples: the average number of concrete examples the oracle provided,
which is also the number of candidate programs.

– Spec-final: the average size of the final abstract example specification (after remo-
ving implied abstract examples).

– #AE-intermediate: the average number of abstract examples shown to the user be-
fore he/she rejected the corresponding candidate program.

– %Better/ equal/ worse than baseline: the percentage of all programs in the bench-
mark that required fewer/ same/ more (concrete) examples than the baseline.

We note that we observed that the time to generate a single abstract example is a few
seconds (≈ 6 seconds).

Results indicate that our synthesis framework (AE), which prunes the program space
based on the abstract examples, improves the baseline in terms of the examples the user
needs to provide. This becomes more significant as the number of examples required
increases: AE improves the baseline on B(4) by 22%, on B(6) by 30%, and on B(8)
by 37%. Moreover, in each benchmark AE performed worse than the baseline only in a

18

The String Program #Abstract
Examples

Concatenates the string “Dear” to the last name. 1
Concatenates the first letter of the first name to the last name. 1
Concatenates the first letter of the first name to the last name and to “@lockhart-gardner.com”. 1
Generates the message presented in the motivating example. 2
Concatenates the first two characters of the first name to the third and fourth characters of the last
name and to the second digit of the meeting time.

6.57

Table 3. Experimental results on the string domain.

single case – and the common case was that it performed better (inB(8), AE performed
better on all cases except two).

Fig. 3 provides a detailed evidence of the improvement: it shows for each experi-
ment (the x-axis) the number of concrete examples each algorithm required (the y-axis).
The figure illustrates that the improvement can be significant. For example, in the 47th

experiment, AE reduced the number of examples from 17 to 7.
The number of concrete examples is also the number of candidate programs gene-

rated by the synthesizer. Thus, the lower number of examples indicates that the abstract
examples improve the pruning of the program space. Namely, abstract examples help
the overall synthesis to converge faster to the target program.

5.3 Abstract Example Specification Evaluation
In this section, we evaluate our generalization algorithm, L-SEP, in the string domain
and check how well it succeeds in learning small specifications. To this end, we fix
a program and a concrete example to start with and run L-SEP. We repeat this with
uncovered inputs until the set of abstract examples covers the string domain. We then
check how many abstract examples were computed.

The programs we considered are related to the motivating example. For each pro-
gram, we run five experiments. Each experiment uses a different Excel row (lawyer) as
the first concrete example. We note that our implementation assumes that the names and
meeting times are non-empty strings and are space-delimited. Table 3 reports the pro-
grams and the average number of abstract examples. Results indicate that the average
number of abstract examples required to describe the entire string domain is low.

6 Related Work
In this section, we survey the work closely related to ours.
Learning Specifications Learning regular languages from examples has been extensi-
vely studied in the computational learning theory, under different models: (i) identifi-
cation in the limit (Gold [20]), (ii) query learning (Angluin [4]), and (iii) PAC learning
(Valiant [44]). Our setting is closest to Angluin’s setting which defines a teacher-student
model and two types of queries: membership (concrete examples) and equivalence (va-
lidation). The literature has many results for this setting, including learning automata,
context-free grammars, and regular expressions (see [37]). In the context of learning
regular expressions, current algorithms impose restrictions on the target regular expres-
sion. For example, [9] allows at most one union operator, [27] prevents unions and
allows loops up to depth 2 , [17] assumes that input samples are finite and Kleene stars
are not nested, and [6] assumes that expressions consist of chains that have at most one

19

occurrence of every symbol. In contrast, we learn an extended form of regular expressi-
ons but we also impose some restrictions. In the context of learning specifications, [43]
learns specifications for programs in the form of logical formulas, which are not intui-
tive for most users. Symbolic transducers [45, 8] describe input-output specifications,
but these are more natural to describe functions over streams than input manipulations.
Least General Generalization L-SEP takes the approach of least general generalization
to compute an abstract example. The approach of least general generalization was first
introduced by Plotkin [32] who pioneered inductive logic programming and showed
how to generalize formulas. This approach was later used to synthesize programs from
examples in a PBE setting [31, 35]. In contrast, we use this approach not to learn the
low-level program, but the high-level specification in the form of abstract examples.
Pre/Post- Condition Inference Learning specifications is related to finding the weakest
pre-conditions, strongest post-conditions, and inductive invariants [16, 24, 36, 13, 12,
19]. Current inference approaches are mostly for program analysis and aim to learn the
conditions under which a bad behavior cannot occur. Our goal is different: we learn the
(good and bad) behaviors of the program and present it through a high-level language.
Applications of Regular Expressions There are many applications of regular expres-
sions, for example in data filtering (e.g., [46]), learning XML file schemes (DTD)
(e.g., [17, 6]), and program boosting (e.g., [11]). All of these learn expressions that are
consistent with the provided examples and have no guarantee on the target expression.
In contrast, we learn expressions that precisely capture program specifications.
Synthesis Program synthesis has drawn a lot of attention over the last decade, and es-
pecially in the setting of synthesis from examples, known as PBE (e.g., [22, 28, 14, 25,
21, 23, 38, 47, 1, 30, 29, 18, 5, 33, 39, 34]). Most PBE algorithms synthesize programs
consistent with the examples, which may not capture the user intent. However, some
works guarantee to output the target program. For example, CEGIS [41] learns a pro-
gram via equivalence queries, and in oracle-guided synthesis [26] the authors assume
that the program space is finite, which allows them to guarantee correctness by explo-
ring all distinguishing inputs (i.e., without validation queries). Synthesis has also been
studied in a setting where a specification and the program’s syntax are given and the
goal is to find a program over this syntax meeting the specification (e.g., [42, 40, 2, 7]).

7 Conclusion
We presented a novel synthesizer that interacts with the user via abstract examples and
is guaranteed to return a program that is correct on all inputs. The main idea is to use
abstract examples to describe a program behavior on multiple concrete inputs. To that
end, we showed L-SEP, an algorithm that generates maximal abstract examples. L-
SEP enables our synthesizer to describe candidate programs’ behavior through abstract
examples. We implemented our synthesizer and experimentally showed that it required
few abstract examples to reject false candidates and reduced the overall number of
concrete examples required.

Acknowledgements The research leading to these results has received funding from
the European Union, Seventh Framework Programme (FP7) under grant agreement no

908126, as well as from Len Blavatnik and the Blavatnik Family foundation.

Bibliography

[1] A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive program synthesis. In
CAV ’13.

[2] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD ’13.

[3] R. Alur, D. Fisman, R. Singh, and A. Solar-Lezama. Sygus-comp 2016: Results
and analysis. In SYNT@CAV 2016.

[4] D. Angluin. Queries and concept learning. Mach. Learn., April 1988.
[5] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn. Flashrelate: Extracting relational

data from semi-structured spreadsheets using examples. In PLDI ’15.
[6] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise dtds from

xml data. In VLDB ’06.
[7] J. Bornholt, E. Torlak, D. Grossman, and L. Ceze. Optimizing synthesis with

metasketches. In POPL ’16.
[8] M. Botinčan and D. Babić. Sigma*: Symbolic learning of input-output specifica-

tions. In POPL ’13, pages 443–456, 2013.
[9] A. Brazma and K. Cerans. Efficient learning of regular expressions from good

examples. In AII ’94, 1994.
[10] N. H. Bshouty. Exact learning from membership queries: Some techniques, results

and new directions. In ALT ’13.
[11] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes. Program

boosting: Program synthesis via crowd-sourcing. In POPL ’15.
[12] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic inference of

necessary preconditions. In VMCAI ’13.
[13] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent

assertions and application to contracts on collections. In VMCAI ’11.
[14] A. Das Sarma, A. Parameswaran, H. Garcia-Molina, and J. Widom. Synthesizing

view definitions from data. In ICDT ’10.
[15] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS ’08.
[16] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM, 18(8), 1975.
[17] H. Fernau. Algorithms for learning regular expressions from positive data. Inf.

Comput., 207:521–541.
[18] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data structure transformati-

ons from input-output examples. In PLDI ’15.
[19] P. Garg, C. Löding, P. Madhusudan, and D. Neider. ICE: A robust framework for

learning invariants. In CAV ’14.
[20] E. M. Gold. Language identification in the limit. Information and Control,

10(5):447–474, 1967.
[21] S. Gulwani. Automating string processing in spreadsheets using input-output ex-

amples. In POPL ’11.
[22] S. Gulwani. Dimensions in program synthesis. In PPDP ’10.

21

[23] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using
examples. Commun. ACM, 55(8):97–105, ’12.

[24] S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural
analysis. In ESOP ’07.

[25] W. R. Harris and S. Gulwani. Spreadsheet table transformations from examples.
In PLDI ’11.

[26] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In ICSE ’10.

[27] E. Kinber. Learning Regular Expressions from Representative Examples and
Membership Queries.

[28] T. A. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld. Programming by de-
monstration using version space algebra. Machine Learning, 53:111–156, 2003.

[29] V. Le and S. Gulwani. Flashextract: A framework for data extraction by examples.
In PLDI ’14.

[30] A. K. Menon, O. Tamuz, S. Gulwani, B. W. Lampson, and A. Kalai. A machine
learning framework for programming by example. In ICML ’13.

[31] S. Muggleton and C. Feng. Efficient induction of logic programs. In First Confe-
rence on Algorithmic Learning Theory, pages 368–381, 1990.

[32] G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5, 1970.
[33] O. Polozov and S. Gulwani. Flashmeta: A framework for inductive program synt-

hesis. In OOPSLA ’15.
[34] V. Raychev, P. Bielik, M. Vechev, and A. Krause. Learning programs from noisy

data. In POPL ’16.
[35] M. Raza, S. Gulwani, and N. Milic-Frayling. Programming by example using

least general generalizations. In AAAI’ 14.
[36] X. Rival. Understanding the origin of alarms in astrée. In SAS ’05.
[37] Y. Sakakibara. Recent advances of grammatical inference. Theoretical Computer

Science, 185(1):15 – 45, 1997.
[38] R. Singh and S. Gulwani. Learning semantic string transformations from exam-

ples. In VLDB ’12.
[39] R. Singh and S. Gulwani. Transforming spreadsheet data types using examples.

In POPL ’16.
[40] R. Singh and A. Solar-Lezama. Synthesizing data structure manipulations from

storyboards. In ESEC/FSE ’11.
[41] A. Solar-Lezama. Program synthesis by sketching. ProQuest, 2008.
[42] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching concurrent data structures.

In PLDI ’08.
[43] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee. A theory of synchronous

relational interfaces. ACM Trans. Program. Lang. Syst., 33(4).
[44] L. G. Valiant. A theory of the learnable. Commun. ACM, Nov. 1984.
[45] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner. Symbolic finite

state transducers: Algorithms and applications. In POPL ’12.
[46] X. Wang, S. Gulwani, and R. Singh. Fidex: Filtering spreadsheet data using ex-

amples. In OOPSLA ’16.
[47] K. Yessenov, S. Tulsiani, A. K. Menon, R. C. Miller, S. Gulwani, B. W. Lampson,

and A. Kalai. A colorful approach to text processing by example. In UIST ’13.

