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Binary Search Tree 

• A data-structure that stores elements 

▫ Each element has a unique key 

▫ Duplications are not allowed 

• The BST consists of nodes  

▫ Each node stores an element 

• For each node 

▫ Keys in the left sub-tree are smaller 

▫ Keys in the right sub-tree are bigger 
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Binary Search Tree Operations 

• Contains(𝑘): check if 𝑘 is present 

 

• Insert(𝑘): insert 𝑘 if it is not yet present 

 

• Remove 𝑘 : remove 𝑘 if present 
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Binary Search Tree Operations 

• Contains(𝑘): check if 𝑘 is present 

 

• Insert(𝑘): insert 𝑘 if it is not yet present 

 

• Remove 𝑘 : remove 𝑘 if present 

▫ Removal of a node with 2 children   

 Find the successor: the left-most node  

of the right sub-tree 
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Binary Search Tree Operations 

• Contains(𝑘): check if 𝑘 is present 

 

• Insert(𝑘): insert 𝑘 if it is not yet present 

 

• Remove 𝑘 : remove 𝑘 if present 

▫ Removal of a node with 2 children   

 Find the successor: the left-most node  

of the right sub-tree 

 Relocate the successor 
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BST: Challenge with Concurrency 

1. Thread A searches for 9 
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 and pauses 

2. Thread B removes 6 
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BST: Challenge with Concurrency 

1. Thread A searches for 9 

 and pauses 

2. Thread B removes 6 

3. Thread A resumes and misses 9 
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Our Contribution 

• We present a new perspective on BST 

▫ Locking is based on a logical ordering layout, and 
not only on the BST layout 

• The additional layout requires 

▫ Extra space for the new links 

▫ Extra time for maintaining the new links 

▫ Extra lock acquires of the new links 

• Yet, it performs as state-of-the-art algorithms 

▫ Sometimes even better 
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Key Idea 

• There is a total order between the keys 
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Key Idea 

• There is a total order between the keys 

• The order induces intervals 

▫ A key is present in the tree if it is an end point of  
some interval 

• We explicitly maintain the intervals 

▫ The logical ordering layout 
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Logical Ordering Layout 

• Connect 𝑛 to its predecessor, 𝑝, and successor, 𝑠  

▫ 𝑛 can access efficiently to (𝑝, 𝑛),(𝑛, 𝑠) 
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Logical Ordering Layout 

• Connect 𝑛 to its predecessor, 𝑝, and successor, 𝑠  

▫ 𝑛 can access efficiently to (𝑝, 𝑛),(𝑛, 𝑠) 

 

• To query whether 𝑘 is in the tree 

▫ Find (𝑝, 𝑠) such that 𝑘 ∈ 𝑝, 𝑠  
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Logical Ordering Layout 

• Connect 𝑛 to its predecessor, 𝑝, and successor, 𝑠  

▫ 𝑛 can access efficiently to (𝑝, 𝑛),(𝑛, 𝑠) 

 

• To query whether 𝑘 is in the tree 

▫ Find (𝑝, 𝑠) such that 𝑘 ∈ 𝑝, 𝑠  

 

• For (𝑝, 𝑠): 𝑝, 𝑠 might be  

non adjacent in the tree 
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Main Advantages 

• Efficiently answer membership queries even 
under concurrent updates to the BST layout 

▫ Includes relocating the successor in a removal  

▫ Includes applying sequential balancing operations 

• Efficiently find the successor of a node 

▫ Important for the removal of a two-nodes parent 

• Efficiently find the minimal/maximal keys 

▫ Can be used to implement a priority queue 
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The Sequential Contains(𝑘) 

• Traverse downwards in the tree  
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The Sequential Contains(𝑘) 

• Traverse downwards in the tree  

• If 𝑘 was found, return true 
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The Sequential Contains(𝑘) 

• Traverse downwards in the tree  
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The Sequential Contains(𝑘) 

• Traverse downwards in the tree  

• If reached to an end of a path,  

return false 
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The Concurrent Contains(𝑘) 

• Traverse downwards in the tree  
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The Concurrent Contains(𝑘) 

• Traverse downwards in the tree  

• If 𝑘 was found, return true 
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The Concurrent Contains(𝑘) 

• Traverse downwards in the tree  
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The Concurrent Contains(𝑘) 

• Traverse downwards in the tree  

• If reached to an end of a path,  

traverse via the ordering layout to  

find (𝑝, 𝑠) such that 𝑘 ∈ [𝑝, 𝑠] 
▫ Return false iff 𝑘 ≠ 𝑝, 𝑠 

 

 

 

 

6 

3 12 

9 

8? 
12 

Contains(8) 

Tree link 
Interval link 



The Concurrent Contains(𝑘) 

• Traverse downwards in the tree  

• If reached to an end of a path,  

traverse via the ordering layout to  

find (𝑝, 𝑠) such that 𝑘 ∈ [𝑝, 𝑠] 
▫ Return false iff 𝑘 ≠ 𝑝, 𝑠 

• This operation is non-blocking 
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Insert and Remove Operations 

• The synchronization is based on locks 

• The operations lock 

▫ The relevant nodes in the tree 

▫ The relevant intervals 
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Insert and Remove Operations 

• The synchronization is based on locks 

• The operations lock 

▫ The relevant nodes in the tree 

▫ The relevant intervals 
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The Sequential Insert(𝑘) 

• Traverse downwards in the tree 

• If 𝑘 was found: cannot insert 

• Otherwise, let 𝑙 be the node at  

the end of a path  
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The Sequential Insert(𝑘) 

• Traverse downwards in the tree 

• If 𝑘 was found: cannot insert 

• Otherwise, let 𝑙 be the node at  

the end of a path  

▫ Connect 𝑙  to the new node 
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The Concurrent Insert(𝑘) 

• Traverse downwards in the tree 

• If 𝑘 was found: cannot insert 

• Otherwise, let 𝑙 be the node at  

the end of a path 
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The Concurrent Insert(𝑘) 

• Traverse downwards in the tree 

• If 𝑘 was found: cannot insert 

• Otherwise, let 𝑙 be the node at  

the end of a path 

• Lock relevant interval 

▫ If 𝑘 ≤ 𝑙: lock (𝑙’s pred, 𝑙) 
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The Concurrent Insert(𝑘) 

• Traverse downwards in the tree 

• If 𝑘 was found: cannot insert 

• Otherwise, let 𝑙 be the node at  

the end of a path 

• Lock relevant interval 

▫ If 𝑘 ≤ 𝑙: lock (𝑙’s pred, 𝑙) 

• Lock 𝑙 
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The Concurrent Insert(𝑘) 

• Traverse downwards in the tree 

• If 𝑘 was found: cannot insert 

• Otherwise, let 𝑙 be the node at  

the end of a path 

• Lock relevant interval 

▫ If 𝑘 ≤ 𝑙: lock (𝑙’s pred, 𝑙) 

• Lock 𝑙 

• Update predecessor-successor 
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The Concurrent Insert(𝑘) 

• Traverse downwards in the tree 

• If 𝑘 was found: cannot insert 

• Otherwise, let 𝑙 be the node at  

the end of a path 

• Lock relevant interval 

▫ If 𝑘 ≤ 𝑙: lock (𝑙’s pred, 𝑙) 

• Lock 𝑙 

• Update predecessor-successor 

• Connect 𝑙  to the new node 
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The Sequential Remove(𝑘) 

• Traverse downwards in the tree 

• If the node to remove has at most 1 child 

▫ Set its parent to point to its child  

(may be null) 
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The Sequential Remove(𝑘) 

• Traverse downwards in the tree 

• If the node to remove has at most 1 child 

▫ Set its parent to point to its child  

(may be null) 
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The Sequential Remove(𝑘) 

• Traverse downwards in the tree 

• If the node to remove has at most 1 child 

▫ Set its parent to point to its child  

(may be null) 

• If the node to remove has 2 children 

▫ Search for its successor, 𝑠 

 The left most node in the right sub-tree 

▫ Relocate 𝑠 to its location 
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The Sequential Remove(𝑘) 

• Traverse downwards in the tree 

• If the node to remove has at most 1 child 

▫ Set its parent to point to its child  

(may be null) 

• If the node to remove has 2 children 

▫ Search for its successor, 𝑠 

 The left most node in the right sub-tree 

▫ Relocate 𝑠 to its location 
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The Concurrent Remove(𝑘) 

• Let 𝑛 be the node to remove 

• Lock (𝑛’s pred, 𝑛) 

• Lock (𝑛, 𝑛’s succ) 
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The Concurrent Remove(𝑘) 

• Let 𝑛 be the node to remove 

• Lock (𝑛’s pred, 𝑛) 

• Lock (𝑛, 𝑛’s succ) 

• Lock 𝑛 and its parent 
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The Concurrent Remove(𝑘) 

• Let 𝑛 be the node to remove 

• Lock (𝑛’s pred, 𝑛) 

• Lock (𝑛, 𝑛’s succ) 

• Lock 𝑛 and its parent 

• If 𝑛 has 2 children 

▫ Lock 𝑛’s successor, its parent  

and child 
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The Concurrent Remove(𝑘) 

• Let 𝑛 be the node to remove 

• Lock (𝑛’s pred, 𝑛) 

• Lock (𝑛, 𝑛’s succ) 

• Lock 𝑛 and its parent 

• If 𝑛 has 2 children 

▫ Lock 𝑛’s successor, its parent  

and child 

▫ Update predecessor-successor 

 

 

6 

3 12 

9 

11 

0 

Remove(6) 

(3,9) 



The Concurrent Remove(𝑘) 

• Let 𝑛 be the node to remove 

• Lock (𝑛’s pred, 𝑛) 

• Lock (𝑛, 𝑛’s succ) 

• Lock 𝑛 and its parent 

• If 𝑛 has 2 children 

▫ Lock 𝑛’s successor, its parent  

and child 

▫ Update predecessor-successor 

▫ Relocate the successor to 𝑛’s location 
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BST: Challenge with Concurrency 

1. Thread A searches for 9 

 and pauses 

2. Thread B removes 6 

                               
6 

3 12 

9 

18 

Thread B: 
Remove(6) 

Thread A: 
Contains(9) 



BST: Challenge with Concurrency 

1. Thread A searches for 9 

 and pauses 

2. Thread B removes 6 

                               

3 12 

9 

18 

Thread B: 
Remove(6) 

Thread A: 
Contains(9) 



BST: Challenge with Concurrency 

1. Thread A searches for 9 

 and pauses 

2. Thread B removes 6 

3. Thread A resumes and misses 9 
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Solution 

• Consult the logical ordering  

layout before making final  

decisions 
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• Consult the logical ordering  
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Solution 

• Consult the logical ordering  

layout before making final  

decisions 

 

 

 3 12 

9 

19 

Thread A: 
Contains(9) Tree link 

Interval link 



Solution 

• Consult the logical ordering  

layout before making final  

decisions 
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From BST to AVL Tree 

• After each update, apply balancing operations 

• Balancing operations relocate nodes in the tree 

▫ Requires only node locks 

• Concurrent threads cannot miss keys, since they 
consult the logical ordering layout 
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Implementation 

• We implemented our BST and AVL tree in Java 

 

• We compared to state-of-the-art algorithms 
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Comparison to Existing Algorithms 

• Partially external trees 

▫ Internal nodes are only marked as removed 

 A follow-up insert can revive them 

 

• Locked-based, partially external trees 

▫ Bronson et al., PPoPP 2010 (BCCO) 

▫ A variation of our work (Our LR-AVL) 
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Comparison to Existing Algorithms 

• External tree 

▫ Elements are kept only in the leaves 

▫ Inner nodes serve as routing nodes 

▫ Only leaves can be asked to be removed 

▫ Traversal paths are typically longer 

 

• Non-Blocking external tree 

▫ Brown et al., PPoPP 2014 (Chromatic) 
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Evaluation 

• A 4-socket AMD Opteron, with 64 h/w threads 

 

• Threads randomly chose operation type and key 

▫ Different workloads for the operation type 

 100% contains, 0% insert, 0% remove 

 70% contains, 20% insert, 10% remove 

▫ Different key ranges  

 2 ⋅ 106,2 ⋅ 105 
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Evaluation  
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• 70% contains, 20% insert, 10% remove 

• Key range: 2 ⋅ 106 
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Evaluation  

 

 

27 

• 70% contains, 20% insert, 10% remove 

• Key range: 2 ⋅ 105 
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Summary 

• We presented a new practical concurrent BST 

▫ Non-blocking search 

▫ Balanced 

▫ Efficient 

▫ Simple 

• Our main insight 

▫ Maintain explicitly the intervals 
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   Thank you! 


