Practical Concurrent Binary Search Trees via Logical Ordering

Dana Drachsler (Technion, Israel) Martin Vechev (ETH, Switzerland) Eran Yahav (Technion , Israel)

Binary Search Tree

- A data-structure that stores elements
 - Each element has a unique key
 - Duplications are not allowed

The BST consists of nodes Each node stores an element

- For each node
 - Keys in the left sub-tree are *smaller*
 - Keys in the right sub-tree are *bigger*

Binary Search Tree Operations

- Contains(*k*): check if *k* is present
- Insert(*k*): insert *k* if it is not yet present
- Remove(*k*): remove *k* if present

Binary Search Tree Operations

- Contains(*k*): check if *k* is present
- Insert(*k*): insert *k* if it is not yet present
- Remove(*k*): remove *k* if present
 - Removal of a node with 2 children
 - Find the successor: the left-most node of the right sub-tree

Binary Search Tree Operations

- Contains(*k*): check if *k* is present
- Insert(*k*): insert *k* if it is not yet present
- Remove(*k*): remove *k* if present
 - Removal of a node with 2 children
 - Find the successor: the left-most node of the right sub-tree
 - Relocate the successor

Remove(6)

9

12

3

1. Thread A searches for 9

. Thread A searches for 9 and pauses

- 1. Thread A searches for 9 and pauses
- 2. Thread B removes 6

- **1**. Thread A searches for 9 and pauses
- 2. Thread B removes 6

- 1. Thread A searches for 9 and pauses
- 2. Thread B removes 6
- 3. Thread A resumes and misses 9

Search operation unaware of concurrent changes to BST layout

Our Contribution

- We present a new perspective on BST
 - Locking is based on a *logical ordering layout*, and not only on the BST layout
- The additional layout requires
 - Extra space for the new links
 - Extra time for maintaining the new links
 - Extra lock acquires of the new links
- Yet, it performs as state-of-the-art algorithms
 Sometimes even better

Key Idea

• There is a total order between the keys

Key Idea

• There is a total order between the keys

Key Idea

- There is a total order between the keys
- The order induces *intervals*
 - A key is present in the tree if it is an end point of some interval
- We explicitly maintain the intervals
 The logical ordering layout

$$\begin{array}{c|c} -\infty & < & 3 \\ \hline & & \\$$

Logical Ordering Layout

Connect *n* to its predecessor, *p*, and successor, *s n* can access efficiently to (*p*,*n*),(*n*,*s*)

Logical Ordering Layout

- Connect *n* to its predecessor, *p*, and successor, *s n* can access efficiently to (*p*,*n*),(*n*,*s*)
- To query whether *k* is in the tree
 □ Find (*p*, *s*) such that *k* ∈ [*p*, *s*]

Logical Ordering Layout

- Connect *n* to its predecessor, *p*, and successor, *s n* can access efficiently to (*p*,*n*),(*n*,*s*)
- To query whether *k* is in the tree
 □ Find (*p*, *s*) such that *k* ∈ [*p*, *s*]
- For (*p*, *s*): *p*, *s* might be non adjacent in the tree

Main Advantages

- Efficiently answer membership queries even under concurrent updates to the BST layout
 - Includes relocating the successor in a removal
 - Includes applying sequential balancing operations
- Efficiently find the successor of a node
 - Important for the removal of a two-nodes parent
- Efficiently find the minimal/maximal keys
 Can be used to implement a priority queue

• Traverse downwards in the tree

- Traverse downwards in the tree
- If *k* was found, return true

Contains(9)

10

- Traverse downwards in the tree
- If reached to an end of a path, return false

Contains(8)

The Concurrent Contains(k)

- Traverse downwards in the tree
- If *k* was found, return true

The Concurrent Contains(k)

- Traverse downwards in the tree
- If reached to an end of a path, traverse via the ordering layout to find (*p*, *s*) such that *k* ∈ [*p*, *s*]
 Return false iff *k* ≠ *p*, *s*

Contains(8)

The Concurrent Contains(k)

- Traverse downwards in the tree
- If reached to an end of a path, traverse via the ordering layout to find (p, s) such that $k \in [p, s]$
 - Return false iff $k \neq p, s$
- This operation is non-blocking

Tree link
Interval link

Contains(8)

Insert and Remove Operations

- The synchronization is based on locks
- The operations lock
 - The relevant nodes in the tree
 - The relevant intervals

Insert and Remove Operations

- The synchronization is based on locks
- The operations lock
 - The relevant nodes in the tree
 - The relevant intervals

The Sequential Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let *l* be the node at the end of a path

The Sequential Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let *l* be the node at the end of a path

Connect *l* to the new node

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let *l* be the node at the end of a path

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let *l* be the node at the end of a path
- Lock relevant interval
 If k ≤ l: lock (l's pred, l)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let *l* be the node at the end of a path
- Lock relevant interval
 If k ≤ l: lock (l's pred, l)
- Lock *l*

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let *l* be the node at the end of a path
- Lock relevant interval • If $k \leq l$: lock (*l*'s pred, *l*)
- Lock *l*
- Update predecessor-successor

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let *l* be the node at the end of a path
- Lock relevant interval • If $k \leq l$: lock (*l*'s pred, *l*)
- Lock *l*
- Update predecessor-successor
- Connect *l* to the new node

The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
 Set its parent to point to its child (may be null)

The Sequential Remove(k) Remove(9)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
 Set its parent to point to its child (may be null)

The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
 Set its parent to point to its child (may be null)
- If the node to remove has 2 children
 - Search for its successor, s
 - The left most node in the right sub-tree
 - Relocate s to its location

12

Remove(6)

0

3

6

9

The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
 Set its parent to point to its child (may be null)
- If the node to remove has 2 children
 - Search for its successor, s
 - The left most node in the right sub-tree
 - Relocate s to its location

Remove(6)

0

3

9

11

12

- Let *n* be the node to remove
- Lock (n's pred, n)
- Lock (n, n's succ)

- Let *n* be the node to remove
- Lock (n's pred, n)
- Lock (n, n's succ)
- Lock *n* and its parent

- Let *n* be the node to remove
- Lock (n's pred, n)
- Lock (*n*, *n*'s succ)
- Lock *n* and its parent
- If *n* has 2 children
 - Lock n's successor, its parent and child

- Let *n* be the node to remove
- Lock (n's pred, n)
- Lock (*n*, *n*'s succ)
- Lock *n* and its parent
- If *n* has 2 children
 - Lock n's successor, its parent and child
 - Update predecessor-successor

- Let *n* be the node to remove
- Lock (n's pred, n)
- Lock (n, n's succ)
- Lock *n* and its parent
- If *n* has 2 children
 - Lock n's successor, its parent and child
 - Update predecessor-successor
 - Relocate the successor to n's location

1. Thread A searches for 9

. Thread A searches for 9 and pauses

- 1. Thread A searches for 9 and pauses
- 2. Thread B removes 6

- **1**. Thread A searches for 9 and pauses
- 2. Thread B removes 6

- 1. Thread A searches for 9 and pauses
- 2. Thread B removes 6
- 3. Thread A resumes and misses 9

From BST to AVL Tree

- After each update, apply balancing operations
- Balancing operations relocate nodes in the tree
 Requires only node locks
- Concurrent threads cannot miss keys, since they consult the logical ordering layout

Implementation

- We implemented our BST and AVL tree in Java
- We compared to state-of-the-art algorithms

Comparison to Existing Algorithms

- Partially external trees
 - Internal nodes are only marked as removed
 - A follow-up insert can revive them
- Locked-based, partially external trees
 Bronson et al., PPoPP 2010 (BCCO)
 A variation of our work (Our LR-AVL)

Comparison to Existing Algorithms

• External tree

- Elements are kept only in the leaves
- Inner nodes serve as routing nodes
- Only leaves can be asked to be removed
- Traversal paths are typically longer
- Non-Blocking external tree
 Brown et al., PPoPP 2014 (Chromatic)

24

3

9

9

3

- A 4-socket AMD Opteron, with 64 h/w threads
- Threads randomly chose operation type and key
 - Different workloads for the operation type
 - 100% contains, 0% insert, 0% remove
 - 70% contains, 20% insert, 10% remove
 - Different key ranges
 - $2 \cdot 10^{6}, 2 \cdot 10^{5}$

- 100% contains, 0% insert, 0% remove
- Key range: $2 \cdot 10^6$

- 70% contains, 20% insert, 10% remove
- Key range: $2 \cdot 10^6$

26

- 70% contains, 20% insert, 10% remove
- Key range: $2 \cdot 10^5$

Summary

- We presented a new practical concurrent BST
 - Non-blocking search
 - Balanced
 - Efficient
 - Simple
- Our main insight
 - Maintain explicitly the intervals

Thank you!