Practical Concurrent Binary Search Trees via Logical Ordering

Dana Drachsler (Technion, Israel)
Martin Vechev (ETH, Switzerland)
Eran Yahav (Technion , Israel)

Binary Search Tree

- A data-structure that stores elements
- Each element has a unique key
- Duplications are not allowed
- The BST consists of nodes
- Each node stores an element
- For each node
- Keys in the left sub-tree are smaller
- Keys in the right sub-tree are bigger

Binary Search Tree Operations

- Contains (k) : check if k is present
- Insert(k): insert k if it is not yet present
- Remove(k): remove k if present

Binary Search Tree Operations

- Contains(k): check if k is present
- Insert(k): insert k if it is not yet present
- Remove (k): remove k if present - Removal of a node with 2 children
- Find the successor: the left-most node of the right sub-tree

Binary Search Tree Operations

- Contains(k): check if k is present
- Insert (k) : insert k if it is not yet present
- Remove(k): remove k if present - Removal of a node with 2 children
- Find the successor: the left-most node of the right sub-tree
- Relocate the successor

BST: Challenge with Concurrency

1. Thread A searches for 9

BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses

BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6

BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6

Thread B:
Remove(6)

BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses

Thread B:
Remove(6)
2. Thread B removes 6
3. Thread A resumes and misses 9

[^0]
Our Contribution

- We present a new perspective on BST
- Locking is based on a logical ordering layout, and not only on the BST layout
- The additional layout requires
- Extra space for the new links
- Extra time for maintaining the new links
- Extra lock acquires of the new links
- Yet, it performs as state-of-the-art algorithms
- Sometimes even better

Key Idea

- There is a total order between the keys

Key Idea

- There is a total order between the keys

Key Idea

- There is a total order between the keys
- The order induces intervals
- A key is present in the tree if it is an end point of some interval
- We explicitly maintain the intervals
- The logical ordering layout

Logical Ordering Layout

- Connect n to its predecessor, p, and successor, s - n can access efficiently to $(p, n),(n, s)$

Logical Ordering Layout

- Connect n to its predecessor, p, and successor, s - n can access efficiently to $(p, n),(n, s)$
- To query whether k is in the tree ${ }^{\circ}$ Find (p, s) such that $k \in[p, s]$

Logical Ordering Layout

- Connect n to its predecessor, p, and successor, s - n can access efficiently to $(p, n),(n, s)$
- To query whether k is in the tree - Find (p, s) such that $k \in[p, s]$
- For $(p, s): p, s$ might be non adjacent in the tree

Main Advantages

- Efficiently answer membership queries even under concurrent updates to the BST layout
- Includes relocating the successor in a removal
- Includes applying sequential balancing operations
- Efficiently find the successor of a node
- Important for the removal of a two-nodes parent
- Efficiently find the minimal/maximal keys
- Can be used to implement a priority queue

The Sequential Contains(k)

- Traverse downwards in the tree

The Sequential Contains(k)

- Traverse downwards in the tree

Contains(9)

- If k was found, return true

The Sequential Contains(k)

- Traverse downwards in the tree

The Sequential Contains(k)

- Traverse downwards in the tree
- If reached to an end of a path, return false

The Concurrent Contains(k)

- Traverse downwards in the tree

Contains(9)

The Concurrent Contains(k)

- Traverse downwards in the tree
- If k was found, return true

\rightarrow Tree link

Interval link

The Concurrent Contains(k)

- Traverse downwards in the tree
\rightarrow Tree link
\longleftrightarrow Interval link

The Concurrent Contains(k)

- Traverse downwards in the tree
- If reached to an end of a path, traverse via the ordering layout to find (p, s) such that $k \in[p, s]$
- Return false iff $k \neq p, s$

The Concurrent Contains(k)

- Traverse downwards in the tree
- If reached to an end of a path, traverse via the ordering layout to find (p, s) such that $k \in[p, s]$
- Return false iff $k \neq p, s$
- This operation is non-blocking

\rightarrow Tree link

\longleftrightarrow Interval link

Insert and Remove Operations

- The synchronization is based on locks
- The operations lock
- The relevant nodes in the tree
- The relevant intervals

Insert and Remove Operations

- The synchronization is based on locks
- The operations lock
- The relevant nodes in the tree
- The relevant intervals

The Sequential Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path

The Sequential Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Connect l to the new node

The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path

The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Lock relevant interval
- If $k \leq l$: lock (l's pred, l)

The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Lock relevant interval
- If $k \leq l$: lock (l's pred, l)
- Lock l

The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Lock relevant interval
- If $k \leq l$: lock (l's pred, l)
- Lock l
- Update predecessor-successor

The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Lock relevant interval
- If $k \leq l$: lock (l's pred, l)
- Lock l
- Update predecessor-successor
- Connect l to the new node

The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
- Set its parent to point to its child (may be null)

Remove(9)

The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
- Set its parent to point to its child (may be null)

Remove(9)

 child

The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
- Set its parent to point to its child (may be null)
- If the node to remove has 2 children
- Search for its successor, s
- The left most node in the right sub-tree
- Relocate s to its location

The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
- Set its parent to point to its child (may be null)
- If the node to remove has 2 children
- Search for its successor, s
- The left most node in the right sub-tree
- Relocate s to its location

The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n's pred, n)
- Lock (n, n 's succ)

The Concurrent Remove(k)

The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n's pred, n)
- Lock (n, n 's succ)
- Lock n and its parent
- If n has 2 children
- Lock n's successor, its parent and child

The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n's pred, n)
- Lock (n, n 's succ)
- Lock n and its parent
- If n has 2 children
- Lock n's successor, its parent and child
- Update predecessor-successor

The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n's pred, n)
- Lock (n, n 's succ)
- Lock n and its parent
- If n has 2 children
- Lock n's successor, its parent and child
- Update predecessor-successor
- Relocate the successor to n's location

BST: Challenge with Concurrency

1. Thread A searches for 9

BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses

BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6

BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6

BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses

Thread B:
Remove(6)
2. Thread B removes 6
3. Thread A resumes and misses 9

Solution

- Consult the logical ordering layout before making final decisions

\rightarrow Tree link

\longleftrightarrow Interval link

Solution

- Consult the logical ordering layout before making final decisions

\rightarrow Tree link

\longleftrightarrow Interval link

Solution

- Consult the logical ordering layout before making final decisions

\rightarrow Tree link
 \longleftrightarrow Interval link

Solution

- Consult the logical ordering layout before making final decisions

\rightarrow Tree link

\longleftrightarrow Interval link

Solution

- Consult the logical ordering layout before making final decisions

\rightarrow Tree link

\longleftrightarrow Interval link

Solution

- Consult the logical ordering layout before making final decisions

\rightarrow Tree link

\longleftrightarrow Interval link

From BST to AVL Tree

- After each update, apply balancing operations
- Balancing operations relocate nodes in the tree - Requires only node locks
- Concurrent threads cannot miss keys, since they consult the logical ordering layout

Implementation

- We implemented our BST and AVL tree in Java
- We compared to state-of-the-art algorithms

Comparison to Existing Algorithms

- Partially external trees
- Internal nodes are only marked as removed
- A follow-up insert can revive them
- Locked-based, partially external trees
- Bronson et al., PPoPP 2010 (BCCO)
- A variation of our work (Our LR-AVL)

Comparison to Existing Algorithms

- External tree
- Elements are kept only in the leaves
- Inner nodes serve as routing nodes
- Only leaves can be asked to be removed
- Traversal paths are typically longer
- Non-Blocking external tree
- Brown et al., PPoPP 2014 (Chromatic)

Evaluation

- A 4-socket AMD Opteron, with 64 h/w threads
- Threads randomly chose operation type and key
- Different workloads for the operation type
- 100\% contains, 0% insert, 0% remove
- 70\% contains, 20\% insert, 10\% remove
- Different key ranges
- $2 \cdot 10^{6}, 2 \cdot 10^{5}$

Evaluation

- 100\% contains, 0% insert, 0% remove
- Key range: $2 \cdot 10^{6}$

Evaluation

- 70\% contains, 20% insert, 10% remove
- Key range: $2 \cdot 10^{6}$

Evaluation

- 70\% contains, 20% insert, 10% remove
- Key range: $2 \cdot 10^{5}$

Summary

- We presented a new practical concurrent BST
- Non-blocking search
- Balanced
- Efficient
- Simple
- Our main insight
- Maintain explicitly the intervals

Thank you!

[^0]: Search operation unaware of concurrent changes to BST layout

