Practical Concurrent Binary Search Trees via Logical Ordering

Dana Drachsler (Technion, Israel)
Martin Vechev (ETH, Switzerland)
Eran Yahav (Technion, Israel)
Binary Search Tree

• A data-structure that stores elements
 ▫ Each element has a unique key
 ▫ Duplications are not allowed
• The BST consists of nodes
 ▫ Each node stores an element
• For each node
 ▫ Keys in the left sub-tree are smaller
 ▫ Keys in the right sub-tree are bigger
Binary Search Tree Operations

- Contains\((k)\): check if \(k\) is present
- Insert\((k)\): insert \(k\) if it is not yet present
- Remove\((k)\): remove \(k\) if present
Binary Search Tree Operations

- **Contains**(k): check if k is present
- **Insert**(k): insert k if it is not yet present
- **Remove**(k): remove k if present
 - Removal of a node with 2 children
 - Find the successor: the left-most node of the right sub-tree

![Binary Search Tree Diagram]

`Remove(6)`
Binary Search Tree Operations

- **Contains(\(k\))**: check if \(k\) is present
- **Insert(\(k\))**: insert \(k\) if it is not yet present
- **Remove(\(k\))**: remove \(k\) if present
 - **Removal of a node with 2 children**
 - Find the successor: the left-most node of the right sub-tree
 - Relocate the successor
BST: Challenge with Concurrency

1. Thread A searches for 9
BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses

Thread A: Contains(9)
BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6
BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6
BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6
3. Thread A resumes and misses 9

Search operation unaware of concurrent changes to BST layout
Our Contribution

• We present a new perspective on BST
 ▫ Locking is based on a *logical ordering layout*, and not only on the BST layout
• The additional layout requires
 ▫ Extra space for the new links
 ▫ Extra time for maintaining the new links
 ▫ Extra lock acquire of the new links
• Yet, it performs as state-of-the-art algorithms
 ▫ Sometimes even better
Key Idea

• There is a total order between the keys
Key Idea

• There is a total order between the keys

-∞ < 3 < 6 < 12 < 24 < ∞
Key Idea

- There is a total order between the keys
- The order induces *intervals*
 - A key is present in the tree if it is an end point of some interval
- We explicitly maintain the intervals
 - *The logical ordering layout*
Logical Ordering Layout

- Connect n to its predecessor, p, and successor, s
 - n can access efficiently to $(p, n), (n, s)$
Logical Ordering Layout

- Connect n to its predecessor, p, and successor, s
 - n can access efficiently to $(p, n), (n, s)$

- To query whether k is in the tree
 - Find (p, s) such that $k \in [p, s]$
Logical Ordering Layout

- Connect n to its predecessor, p, and successor, s
 - n can access efficiently to $(p, n), (n, s)$

- To query whether k is in the tree
 - Find (p, s) such that $k \in [p, s]$

- For (p, s): p, s might be non adjacent in the tree
Main Advantages

• Efficiently answer membership queries even under concurrent updates to the BST layout
 ▫ Includes relocating the successor in a removal
 ▫ Includes applying sequential balancing operations
• Efficiently find the successor of a node
 ▫ Important for the removal of a two-nodes parent
• Efficiently find the minimal/maximal keys
 ▫ Can be used to implement a priority queue
The Sequential `Contains(\(k\))`

- Traverse downwards in the tree

```
Contains(9)
9?
```
```
6

3  12

9
```
The Sequential `Contains(k)`

- Traverse downwards in the tree
- If \(k \) was found, return true
The Sequential Contains(k)

- Traverse downwards in the tree

Contains(8)
The Sequential Contains(k)

- Traverse downwards in the tree
- If reached to an end of a path, return false

Contains(8)
The Concurrent Contains(k)

- Traverse downwards in the tree
The Concurrent Contains(k)

- Traverse downwards in the tree
- If k was found, return true

Tree link
Interval link
The Concurrent Contains(k)

- Traverse downwards in the tree

Tree link

Interval link
The Concurrent Contains\((k)\)

- Traverse downwards in the tree
- If reached to an end of a path, traverse via the ordering layout to find \((p, s)\) such that \(k \in [p, s]\)
 - Return false iff \(k \neq p, s\)
The Concurrent Contains(k)

- Traverse downwards in the tree
- If reached to an end of a path, traverse via the ordering layout to find (p, s) such that $k \in [p, s]$
 - Return false iff $k \neq p, s$
- This operation is non-blocking
Insert and Remove Operations

- The synchronization is based on locks
- The operations lock
 - The relevant nodes in the tree
 - The relevant intervals

Node lock
Interval lock
Insert and Remove Operations

- The synchronization is based on locks
- The operations lock
 - The relevant nodes in the tree
 - The relevant intervals

Node lock
Interval lock
The Sequential Insert(k)

• Traverse downwards in the tree
• If k was found: cannot insert
• Otherwise, let l be the node at the end of a path
The Sequential Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
 - Connect l to the new node
The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path

```
Insert(7)
```

```
6  3  12
  \\
  \\
  9

```

```
7
```
The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Lock relevant interval
 - If $k \leq l$: lock (l’s pred, l)
The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Lock relevant interval
 - If $k \leq l$: lock (l’s pred, l)
- Lock l
The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Lock relevant interval
 - If $k \leq l$: lock (l’s pred, l)
- Lock l
- Update predecessor-successor
The Concurrent Insert(k)

- Traverse downwards in the tree
- If k was found: cannot insert
- Otherwise, let l be the node at the end of a path
- Lock relevant interval
 - If $k \leq l$: lock (l’s pred, l)
- Lock l
- Update predecessor-successor
- Connect l to the new node
The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
 - Set its parent to point to its child (may be null)
The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
 - Set its parent to point to its child (may be null)
The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
 - Set its parent to point to its child (may be null)
- If the node to remove has 2 children
 - Search for its successor, s
 - The left most node in the right sub-tree
 - Relocate s to its location

Remove(6)
The Sequential Remove(k)

- Traverse downwards in the tree
- If the node to remove has at most 1 child
 - Set its parent to point to its child (may be null)
- If the node to remove has 2 children
 - Search for its successor, s
 - The left most node in the right sub-tree
 - Relocate s to its location
The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n’s pred, n)
- Lock (n, n’s succ)
The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n’s pred, n)
- Lock (n, n’s succ)
- Lock n and its parent

Remove(6)
The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n’s pred, n)
- Lock (n, n’s succ)
- Lock n and its parent
- If n has 2 children
 - Lock n’s successor, its parent and child
The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n’s pred, n)
- Lock (n, n’s succ)
- Lock n and its parent
- If n has 2 children
 - Lock n’s successor, its parent and child
 - Update predecessor-successor
The Concurrent Remove(k)

- Let n be the node to remove
- Lock (n’s pred, n)
- Lock (n, n’s succ)
- Lock n and its parent
- If n has 2 children
 - Lock n’s successor, its parent and child
 - Update predecessor-successor
 - Relocate the successor to n’s location
BST: Challenge with Concurrency

1. Thread A searches for 9

Thread A: Contains(9)
BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses

```
Thread A: Contains(9)
```

```
6
/ \
3   12
   /  \
  9
```
BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6
BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6
BST: Challenge with Concurrency

1. Thread A searches for 9 and pauses
2. Thread B removes 6
3. Thread A resumes and misses 9
Solution

• Consult the logical ordering layout before making final decisions
Solution

• Consult the logical ordering layout before making final decisions
Solution

• Consult the logical ordering layout before making final decisions

Tree link
Interval link
Solution

• Consult the logical ordering layout before making final decisions
Solution

• Consult the logical ordering layout before making final decisions
Solution

• Consult the logical ordering layout before making final decisions

Thread A: Contains(9)

Tree link
Interval link
From BST to AVL Tree

- After each update, apply balancing operations
- Balancing operations relocate nodes in the tree
 - Requires only node locks
- Concurrent threads cannot miss keys, since they consult the logical ordering layout
Implementation

• We implemented our BST and AVL tree in Java

• We compared to state-of-the-art algorithms
Comparison to Existing Algorithms

• Partially external trees
 ▫ Internal nodes are only marked as removed
 • A follow-up insert can revive them

• Locked-based, partially external trees
 ▫ Bronson et al., PPoPP 2010 (BCCO)
 ▫ A variation of our work (Our LR-AVL)
Comparison to Existing Algorithms

• External tree
 ▫ Elements are kept only in the leaves
 ▫ Inner nodes serve as routing nodes
 ▫ Only leaves can be asked to be removed
 ▫ Traversal paths are typically longer

• Non-Blocking external tree
 ▫ Brown et al., PPoPP 2014 (Chromatic)
Evaluation

- A 4-socket AMD Opteron, with 64 h/w threads

- Threads randomly chose operation type and key
 - Different workloads for the operation type
 - 100% contains, 0% insert, 0% remove
 - 70% contains, 20% insert, 10% remove
 - Different key ranges
 - $2 \cdot 10^6, 2 \cdot 10^5$
Evaluation

- 100% contains, 0% insert, 0% remove
- Key range: $2 \cdot 10^6$
Evaluation

- 70% contains, 20% insert, 10% remove
- Key range: $2 \cdot 10^6$
Evaluation

- 70% contains, 20% insert, 10% remove
- Key range: $2 \cdot 10^5$

![Graph showing throughput vs. number of threads for different algorithms.]
Summary

• We presented a new practical concurrent BST
 ▫ Non-blocking search
 ▫ Balanced
 ▫ Efficient
 ▫ Simple

• Our main insight
 ▫ Maintain explicitly the intervals

Thank you!